PURDUE cscapes

Multithreaded Graph Coloring Algorithms for
Scientific Computing on Many-core Architectures

Assefaw Gebremedhin
agebreme@purdue.edu
Purdue University

ICCS Workshop on Manycore and Accelerator-based

High-Performance Scientific Computing
Berkeley, January 28, 2011

CSCAPES

Computational Science Application

- Scientific Computing Tool i HPC Task - Combinatorial Problem

WWW.CSCapes.org

Coloring and its applications

* Graph coloring is an abstraction for
partitioning a set of binary-related objects
into few “independent sets”

* Coloring contributed to the growth of

much of Graph Theory GRAPH
COLORING BGHROMATIC

PROBLEMS NG RAPH
L T G EORY

* Our work on coloring is motivated by its
practical applications:

— Concurrency discovery in parallel
(scientific) computing

— Sparse derivative matrix
computation

— Scheduling

— Frequency Assignment
— Facility Location

— Register Allocation, etc

Graph coloring in concurrency discovery

© * Adaptive mesh
refinement

* |terative methods for

\ sparse linear systems
0 .
* Full sparse tiling

Time

Coloring models in derivative computation: overview

4-step procedure for computing a | A o SL _ B i
sparse derivative matrix A using B ’
Automatic Differentiation:

 S1: Determine the sparsity structure of A
» S2: Obtain a seed matrix S by coloring the graph of A

* $3: Compute a compressed matrix B=AS

* $4: Recover entries of A from B

distance-2 coloring star bicoloring
star coloring NA

NA acyclic bicoloring

acyclic coloring NA

symmetric
case

nonsymmetric
case

structurally orthogonal

Distance-2 coloring:
an archetypal model in direct methods

partition

ap

a3y
0

0 0
a5y 0

a3 34
0 gy
0 as4

a, 0 0
ay 0 0

0 0 ay
0 a3 Ay

a5

ays

distance-2 coloring

€1 ¢

Coloring models in derivative computation revisited

distance-2 coloring star bicoloring
G, Manne and Pothen (05) Coleman and Verma (98)

Hossain and Steihaug (98)

star coloring NA
Coleman and More (84)

restricted star coloring*
Powell and Toint (79)

NA acyclic bicoloring
Coleman and Verma (98)

acyclic coloring NA
Coleman and Cai (86)

triangular coloring*
Coleman and More (84)

* Less accurate models Jacobian: bipartite graph
Hessian: adjacency graph

ColPack

www.cscapes.org/coloringpage

SIAM Review 47(4):629—705, 2005.

7

An Example Application

Principle of Chromatography

Desorbent Feed

(Water, organic (Mixture of red and blue

solvent, etc)

components

Red component sticks more strongly
to adsorbent particles

/

Pump Chromatographic column

Packing medium
(adsorbent partlcles)

Blue Red

component component
http://www.cwg.hu/english/r-wtcomp.html

Figure courtesy of
Yoshiaki Kawajiri, GT

Simulated Moving Bed process

A psuedo counter-current process
that mimics operation of TMB

* Reaches only Cyclic Steady State

* Various objectives to be maximized

could be identified
E.g: product purity, product recovery,
desorbent consumption, throughput

* We considered throughput
maximization

* Objective modeled as an optimization
problem with PDAEs as constraints

* Full discretization was used to solve
the PDAEs =» sparse Jacobians

Extract

Direction of liquid flow

and valv

switching

Raffinate

Desorbent

Results on Jacobian computation on SMB problem

« Tested efficacy of the 4-step procedure:

. seed
sparsity . matrix-vector
detection (S1) gen(esrza)‘u o product (S3) recovery (S4)

» Used ADOL-C for steps Sland S3, and ColPack for
steps S2 and S4

* Observed results for each step matched
analytical results

* Technigues enabled huge savings in runtime

Time(Jacobian eval) = 100xTime(function eval)

* Dense computation (without exploiting sparsity)
was infeasible

G, Pothen and Walther: AD2008.

runtime(F)

250

200

150

runtime(task)/runtime(F)

50§

0.02

0.015¢

0.01r

0.0051

1007

=51
-S4 ||
-A-total
A
= ;i
A 4
0 2 3 5
m/100000
2 3 5
m/100000

11

Complexity and algorithms

* Distance-k, star, and acyclic coloring are NP-hard (to even approximate)

— Distance-1 coloring hard to approximate to within n{%¢ for all e>0 [Zuckerman’07]

* A greedy algorithm usually gives good solution

GREEDY(G=(V,E))
the vertices in V
fori=1to [V/ do

Determine colors to v,

Assign v; the color

[Update collection of induced subgraphs]
end-for

e ColPack has

— O(|V]d,)-time algorithms for distance-k coloring (d, is average degree-k)

— O(|V|d,)-time algorithms for star and acyclic coloring

Key idea: exploit structure of

Ordering techniques in ColPack:
fresh formulation

Ordering Property

fori=1ton:
v; has largest degree in V\{v,, v,,..., v}

fori=1ton:
v; has largest back degree in V\{v,, v,,..., v}

fori=1ton:
v; has largest forward degree in V\{v,, v,,..., v}

fori=nto1:
v; has smallest back degreein V\{v,, v, ;,..., vy}

Back degree Forward degree Formulation enables:
- o ‘
* modular imp.
* linear time imp.
Vi|V2 Vi Vo-1| Yo * discovery of use in
other contexts
- -

Parallelization...

14

Challenges in parallelization in general
(on contemporary platforms)

 Parallel Architectural Models?

— Control mechanism; address space (memory)
organization; interconnection network; etc

* Parallel Programming Models?

— Shared memory; distributed memory; massive
threading; etc

* Parallel Computational Models?
— Wish: realistic yet reasonably simple abstractions

Challenges in parallelizing graph algorithms

* Low available concurrency
* Poor data locality

* Irregular memory access pattern
* Access pattern determined only at runtime
* High data access to computation ratio

Parallel Coloring Algorithms

Independent-set based (previous approaches)

— Find maximal independent set in parallel (Luby’s algorithm)
— Limited (or no) success

Iteration and speculation

Iterative Algorithm (G=(V,E))
Order Vin parallel
u=Vv
while U is not empty
1. Speculatively color vertices in U in parallel;
2. Check consistency of colors in U in parallel, store conflicts in R;
U =R;

Dataflow
— Fine-grain (edge-level) synchronization; no iteration
— Feasible when there is HW support for FGS (like the Cray XMT)

17

Enhancing the Iterative Algorithm

* Color choice
— First Fit
— Staggered First Fit
— Least Used
— Random

* Resolving a conflict
— Randomization

Ordering is inherently sequential
Remedy: approximation

(a)
lllustration: Buckets| | [2 [3 | 4 Buckets| | | 2 [3 |4
. cle | mmemmes | C g
Candidate
Smallest Last Candidate | £ | P h| Kk
s eesesas - k
ordering .
(b) (d)
Buckets| ! 314 Buckets| ! | 2 |3 |4
"""" -~ d i d|i
Candidate -
c] e
1 Candidate] !
....... -1

(¢) (e)

19

Experimental Results on
Parallel Performance

20

Test platforms

Intel Nehalem Sun Niagara 2 Cray XMT

(a‘ TTTTT o |[om o |[om . m @ HHHHHH B B m / \ /
0‘1‘2‘3‘4‘5‘5‘7 0‘1‘2‘3‘4‘5‘6‘7 0‘1‘2‘3‘4‘5‘5‘7 0[1]2|3|4|5(6|7| 0123455‘7 0]1|2/3[4{5|6/7|
Core-0 Core-1 Core-2 Core-3 Core-0 Core-1 Core-2 Core-3 Processor- 0 Processor- 1 P N
Licache || L1Cache || LiCache || L1cache L1Cache || L1Cache || LicCache || L1cache Core-0 Core-l |eee | Core7 Core-0 Core-l |ees | Core7
L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache
| 8x9 Cache Crossbar | | 8x9 Cache Crossbar |
Shared L3 Cache Shared L3 Cache T T T T T T T T t t
| Shared L2 Cache (8 Banks) | | Shared L2 Cache (8 Banks) | + +
{ 1 { 1 3 3 3 T 3 T T T : :
Memory QP > QP Memory Memory Memory Memory Memory Memory Memory Memory Memon : :
Controller | Controller il Controller || controller || controller Controller || Controller || controler || controller h h
I I
[: | 3D Torus Network : | J
T T T T T T
| | I | | |
v v v v A, A, A, A, v A, v | v | v |
(.)
[Shared Global Memory } Shared Global Memory ! Shared Global “Virtual” Memory (8 GBytes X N) !
i With hardware shuffling at 64 Bytes granularity ‘\

= two quad-core chips = two 8-core sockets = 128 processors

= two hyperthreads = 8 hardware threads = 128 hardware thread streams
per core per socket per processor

= private L1 and L2 cache, = L1 cache on core, = cache-less, globally accessible
shared L3 cache shared L2 cache shared memory

= hardware support for fine-grain
synchronization

Test graphs

Name \4 |E| A | Name \4 | E| A
sc2 (bone010) 986,703 35339,811 80 | gl 131,072 1,046,384 407
sc3 (af.shelll0) 1,508,065 25,582,130 34 | g2 262,144 2,093,552 558
sc6 (kkt power) 2,063,494 6,482,320 95 | g3 524288 4,190,376 618
sc7 (nlpkkt120) 3,542,400 46,651,696 27 | g4 1,048,576 8,382,821 802
sc8 (erl) 16,777,216 134,217,651 138 | gb 2,097,152 16,767,728 1,069
sc9 (nlpkkt160) 8,345,600 110,586,256 27 | g6 4,194,304 33,541,979 1,251
erl 131,072 1,048,515 82 | bl 131,072 1,032,634 2,980
er2 262,144 2,097,104 98 | b2 262,144 2,067,860 4,493
er3 524,288 4,194,254 94 | b3 524,288 4,153,043 6,342
erd 1,048,576 8,388,540 97 | b4 1,048,576 8,318,004 9,453
erd 2,097,152 16,777,139 102 | b5 2,097,152 16,645,183 14,066
eré 4,194,304 33,554,349 109 | b6 4,194,304 33,340,584 20,607

sc : graphs from scientific computing apps
er : R-MAT (0.25, 0.25, 0.25, 0.25)
g : R-MAT (0.45, 0.15, 0.15, 0.25)
b : R-MAT (0.55, 0.15, 0.15, 0.15)

Distance-2 coloring: # colors

150 - - - - - - 120

.0

I 1 Threac
)2 Threacs
100 4 Threacs
I 5 Threacs
(a) Colors - SLE-FF-SC (b) Colors - SLE-FF-ER

Nehalem

23

Distance-2 coloring: # colors

1zeer .

1ocer B = Threads

o] o

B0CF

400F

200F

(c) Colors - SLE-FF-G (d) Colors - SLE-FF-B

Nehalem

24

time / time using 1 thread (%)

Distance-2 coloring: runtime

100 100}
90t el ——ar1
. ——er2
801 & 8o —=—er3
= erd
I}
- O ers
70 g 701 —b— or6
60 2 s0f
‘©
3
S0 g 50F
ey
40 £ 4of
301 30}
20 I~ 20 -
1 Tr;read 2 Threads < Th;eads 8 Threads 1 Thread 2 Threads 4 Threads 8 Threads
(a) TT - SLE-FF-SC (b) TT - SLE-FF-ER

Nehalem

time /time using 1 thread (%)

100

90}

80

70

60

501

40

30

20

Distance-2 coloring: runtime

1 '

1 Thread 2 Threads 4 Threads

(¢c) TT - SLE-FF-G

1
—*—g2 .
—8&—g3 2

g4 ©

a5 3
o
£
w
-
[+)
=
=
.-
[+]
£
=

L
8 Threads
Nehalem

00

80

80

70

60

50

40

30

20

L 1

~—Db1
——Db2
—8—b3

ps
—te— 5

1 Thread 2 Threads 4 Threads

(d) TT - SLE-FF-B

8 Threads

26

Distance-1 coloring: # colors

12 30
°
o °
3 8 g 20
7] 3
s e
8 v 8 ~ .
5 Miterative-Nehalem-2T/C s miterative-Nehalem-2T/C
- + d | = = ~
g ¢ mlterative-Niagara-8T/C 5 10 -:teratgv&m:#ara 8T/C
[3 Cliterative-XMT 'g @iterative-
g mDataflow-XMT 3 miDataflow-XMT
2 —Serial Coloring
—Serial Coloring . Il
0 e - - - 0
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of cores/processors Number of processors
(a) RMAT-ER (b) RMAT-G

200

150 -

Miterative-Nehalem-2T/C
miterative-Niagara-8T/C
Diterative-XMT

m Dataflow-XMT

—Serial Coloring

Number of Colors used
g g

1 2 4 8 16 32 64 128

Number of cores/processors

(c) RMAT-B

Nehalem, Niagara 2, Cray XMT

Cray XMT

Niagara 2

Time (in seconds)

Time (in seconds)

256

128

64

32

16

8 -

4 -

2

1

0.5

0.25

256

128

64

w
N

=
o

®

IS

N

i

Distance-1 coloring : runtime

[terative

\ ~#-Scale24
\\ <@-Scale25

| E \\ ~#-Scale26
_\ -%Scale27

\\-

1

2 4 8 16 32 64 128

Number of processors

. ~o-1 thread/core
Iterative
~ -@-2 threads/core
-\\ -#-4 threads/core
<8 threads/core

Number of cores

Time (in seconds)

Time (in seconds)

256

128

64

32 +

16

8

4

2

1
0.5
0.25

0.125

32

16

o

Small-world graphs with 224, ..., 2?7 vertices and 134M, ..., 1B edges

N Dataflow ~+-scale24
\\ <@-Scale25
.\\\ -A-Scale26
e S ¢Scale2?

Cray XMT

Number of processors

. -1 thread/core
Iterative -2 threads/core

Small-world graph with 2?4 = 16M vertices and 134M edges

Nehalem

1 2 4 g

Number of cores 28

Iterative: looking inside

(. 32
65536 % Iterative-Nehalem-2T/C
W Iterative-Niagara-8T/C
16384 | miterative-XMT 16
g o 5
T 1024 £ 8
8 g
3_! 256 s
2 o S 4)
§ % 'E ¥ [terative-Nehalem-2T/C
.E 3 2 | m Iterative-Niagara-8T/C
2 4 ' I O Iterative-XMT
1 1 | 11| o i m
1 2 4 8 16 32 64 128
Number of processors Number of processors
(a) Total number of conflicts (b) Number of iterations
65536
™ Nehalem (8 Cores; 2T/C)
16384 ™ Nizgara (16Cores; 8T/C)
g 4096 @ XMT (128 processors)
® 1024
g
= 256
a
»n 64
£ I
£ 16
3 I
o 4 Iy
. A L

1 3 5 7 9 11 13 15 17 19 21 23

Iteration Number

Nehalem, Niagara 2, Cray XMT

A “generic” parallelization technique?

* “Standard” Partitioning

— Break up the given problem into p independent subproblems of
almost equal sizes

— Solve the p subproblems concurrently

* “Relaxed” Partitioning

— Break up the problem into p, not necessarily entirely
independent, subproblems of almost equal sizes

— Solve the p subproblems concurrently
— Detect inconsistencies in the solutions concurrently
— Resolve any inconsistencies

Can be used potentially successfully if the resolution in the fourth
step involves only local adjustments

Thanks

* Erik Boman, Doruk Bozdag, Umit Catalyurek, John Feo,
Mahantesh Halappanavar, Bruce Hendrickson,
Paul Hovland, Fredrik Manne, Duc Nguyen,
Mostafa Patwary, Alex Pothen, Arijit Tarafdar,
Andrea Walther

* Financial Support: DOE, NSF

Some References

Gebremedhin, Nguyen, Pothen and Patwary. ColPack: Graph Coloring Software for
Derivative Computation and Beyond. ACM Trans. Math. Software. Submitted. 2010.

Gebremedhin, Manne and Pothen. What color is your Jacobian? Graph coloring for
computing derivatives. SIAM Review 47(4):627—705, 2005.

Gebremedhin, Tarafdar, Manne and Pothen. New acyclic and star coloring
algorithms with applications to computing Hessians. SIAM J. Sci. Comput. 29:1042
—1072, 2007.

Gebremedhin, Pothen and Walther. Exploiting sparsity in Jacobian computation via
coloring and automatic differentiation: a case study in a Simulated Moving Bed
process. AD2008, LNCSE 64:339---349, 2008.

Catalyurek, Feo, Gebremedhin, Halappanavar, Pothen. Multithreaded Algorithms
for Graph Coloring. In submission, 2011.

Bozdag, Catalyurek, Gebremedhin, Manne, Boman and Ozguner. Distributed-
memory parallel algorithms for distance-2 coloring and related problems in
derivative computation. SIAM J. Sci. Comput. 32(4):2418--2446, 2010.

Bozdag, Gebremedhin, Manne, Boman and Catalyurek. A framework for scalable
greedy coloring on distributed-memory parallel computers. J. Parallel Distrib.

Comput. 68(4):515—535, 2008.

For more information: www.cs.purdue.edu/homes/agebreme

